Spatial-angular compounding for elastography using beam steering on linear array transducers.

نویسندگان

  • Min Rao
  • Quan Chen
  • Hairong Shi
  • Tomy Varghese
چکیده

Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Under this method, compounded elastograms are obtained from a spatially weighted average of local strain estimated from radio frequency (rf) echo signals acquired at different insonification angles. In previous work, the acquisition of the rf signals was performed through the lateral translation of a phased-array transducer. Clinical applications of angular compounding would, however, require the utilization of beam steering on linear-array transducers to obtain angular data sets, which is more efficient than translating phased-array transducers. In this article, we investigate the performance of angular compounding for elastography by using beam steering on a linear-array transducer. Quantitative experimental results demonstrate that spatial angular compounding provides significant improvement in both the elastographic signal-to-noise ratio and the contrast-to-noise ratio. For the linear array transducer used in this study, the optimum angular increment is around 1.5 degrees-3.75 degrees, and the maximum angle that can be used in angular compounding should not exceed 10 degrees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Compounding of Ultrasonic Diagnostic Images for Rotating Linear Probe with Geometric Parameter Error Compensation

In ultrasonic medical imaging, spatial compounding of images is a technique where ultrasonic beam is steered to examine patient tissues in multiple angles. In the conventional ultrasonic diagnostic imaging, the steering of the ultrasonic beam is achieved electronically using the phased array transducer elements. In this paper, a spatial compounding approach is presented where the ultrasonic pro...

متن کامل

Normal and shear strain imaging using 2D deformation tracking on beam steered linear array datasets.

PURPOSE Previous publications have reported on the use of one-dimensional cross-correlation analysis with beam-steered echo signals. However, this approach fails to accurately track displacements at larger depths (>4.5 cm) due to lower signal-to-noise. In this paper, the authors present the use of adaptive parallelogram shaped two-dimensional processing blocks for deformation tracking. METHOD...

متن کامل

Spatial Angular Compounding of Photoacoustic Images

Photoacoustic (PA) images utilize pulsed lasers and ultrasound transducers to visualize targets with higher optical absorption than the surrounding medium. However, they are susceptible to acoustic clutter and background noise artifacts that obfuscate biomedical structures of interest. We investigated three spatial-angular compounding methods to improve PA image quality for biomedical applicati...

متن کامل

Simulation of ultrasound two-dimensional array transducers using a frequency domain model.

Ultrasound imaging with two-dimensional (2D) arrays has garnered broad interest from scanner manufacturers and researchers for real time three-dimensional (3D) applications. Previously the authors described a frequency domain B-mode imaging model applicable for linear and phased array transducers. In this paper, the authors extend this model to incorporate 2D array transducers. Further approxim...

متن کامل

Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding.

Spatial-angular compounding is a new technique developed for improving the signal-to-noise ratio (SNR) in elastography. Under this method, elastograms of a region-of-interest (ROI) are obtained from a spatially weighted average of local strain estimated along different insonification angles. In this article, we investigate the improvements in the strain contrast and contrast-to-noise ratio (CNR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2006